

CALIFORNIA STATE UNIVERSITY **Core Feature Extraction with Computer Vision** BAKERSFIELD Salvador A. Vargas, Daniel Torres and Dr. Alberto C. Cruz

What Is Core?

- Core: intact, cylindrical piece of rock coming from wellbore
- Brought to surface for analysis
- Collected during drilling of exploratory wells
- At novel sites or untapped reservoir depths Core analysis evaluates economic viability of exploratory wells and surrounding reservoirs

The Problem

- Analysis is done at a maximum of one-foot intervals which generates a representative data set
- Reservoir may not be homogenous Manual core analysis prone to human errors and timeconsuming

The Solution

- Artificial intelligence can be used to overcome many of the flaws of conventional core analysis
 - Convolutional neural networks can analyze core images and generate a continuous analysis
 - Convolutional neural networks can generate an analysis of the core almost instantly and save time
 - Convolutional neural networks can analyze core images at no cost
 - Convolutional neural networks can analyze core images and eliminate human error and subjectivity

Industry Partners

School of Natural Sciences, Mathematics, and Engineering

Implementation

To train the neural networks to make predictions about a core's oil saturation level and saturation category, we collected a large inventory of core slab images from our partner companies along with the corresponding core analysis reports. For every oil saturation report value, a crop of the core slab was taken at the equivalent depth.

Sample Number	Depth	Perm.	Porosity	Fluid Saturation			
		Kair		Oil	Water	O/W	Total
	ft	md	%	%	%	Ratio	%
53	1362.3	1.8	12.3	21.6	72.8	0.30	94.4
54	1380.7	247.5	29.5	18.3	68.4	0.27	86.7
55	1382.3	2865.6	33.3	55.3	17.1	3.23	72.4
56	1386.2	181.3	24.7	35.6	56.8	0.63	92.4
57	1413.7	35.1	22.1	15.9	72.5	0.22	88.4
58	1423.4	1789.5	35.1	58.1	16.9	3.43	75.0
59	1432.8	F/ 109.7	29.6	29.9	56.5	0.53	86.4
60	1434.9	46.0	29.2	38.2	52.4	0.73	90.6
61	1437.0	61.2	26.3	43.8	50.2	0.87	94.0
62	1440.9	12.3	28.0	30.8	63.6	0.48	94.3
63	1447.5	32.3	26.4	34.8	58.3	0.60	93.2
64	1449.8	47.3	26.9	39.5	55.9	0.71	95.4

along with the reported saturation value.

to refine their predictive capabilities.

- Regression models were trained to generate an average mean absolute error of 9.28 surpassing the ability of a human core analyst
- Future work will involve adding more core data to improve the predictive capabilities of the models and adding an automated lithology describer